foundation system of burj al arab

Problems with Foundation on Expansive Soil

Volumetric changes of the underlying and surrounding soils of building foundations resting on moderate to highly expansive clay soils results potential detrimental effects to structure or its elements due to differential movements of the foundation. In simple terms, expansive clay soils swell and can cause heave with increasing soil moisture, or can dry out and cause subsidence with decreasing soil moisture.

Movement of expansive soils is caused by fluctuations in the moisture content of soil particles. Because homogeneous expansive clay soils have very low permeability, fluctuations in the moisture content of the soils might normally be expected to occur over a very long period. However, permeability is increased with geotechnical phenomena such as ground faults, surface fractures due to desiccation of clays, and decomposition of tree roots which cause fissures and cracks that become widely disseminated over time.

Due to the repeated wetting, swelling, drying, and shrinking of the clay as it weathers, the fissures often fill with silt and sand, and create pathways for water that can exacerbate the infiltration process. Water can also easily move through naturally occurring sand strata, sand seams, and micro-cracks in clay soil caused by previous shrinkage. High negative pressures, also known as suction, in clay soils with low water content also increase the tendency for water to be absorbed into the clay.

Environmental factors other than climatic conditions can also affect expansive soils. Water extraction by trees and other vegetation, a process known as transpiration, can cause soil shrinkage. Swelling can be a result of water infiltration into the soil from lawn irrigation systems, broken water pipes, flooded and leaking utility trenches, poor drainage, or leaking swimming pools, or it can be a result of slow moisture replenishment and equalization after the removal of a tree. The combined effect and variability of all of these possibilities make it difficult to accurately predict expansive soil ground movements.

Foundation movements are considered problematic only if they result in negative phenomena that detrimentally affect the performance or appearance of the building. The negative phenomena are considered to be structural if the load carrying capacity of the superstructure or foundation elements are affected, or are considered to be cosmetic if only the appearance of the exterior cladding or interior wall, floor, or ceiling finishes are affected. Negative phenomena can also affect the serviceability the building, such as the opening or closing of doors.
Negative phenomena due to foundation movement typically occur because of differential movements between various parts of the building. Differential movements often lead to high internal stresses in building components resulting as distress in the form of cracks, splitting, bending, buckling, or separations in the exterior cladding systems such as brick, cement-board panels, or in the interior finishes such as gypsum drywall panels, wood paneling, and flooring

Negative phenomena due to foundation movement typically occur because of differential movements between various parts of the building. Differential movements often lead to high internal stresses in building components resulting as distress in the form of cracks, splitting, bending, buckling, or separations in the exterior cladding systems such as brick, cement-board panels, or in the interior finishes such as gypsum drywall panels, wood paneling, and flooring.

No comments:

Post a Comment

Followers